Topic 4-Functions

[lopic 4-Functions]

We are going to formally define functions as sets but then after that we won't really use that method anymore We will just use formulas like USVal.

EX: Consider the function $f(x) = x^2$ where $x \in \mathbb{R}$. graph of f R (۲,۲) (-2,4) (1,1)(0,0) The graph is $\{(x, x^2) \mid x \in \mathbb{R}\}$ lives inside of This graph RXIR (co-domain, where) the range lives (domain)

 $\underbrace{E_{X}}_{z} f(x,y) = x^{2} + y^{2}$ graph lives in $R^{3} = R \times R \times IR$ co-domain domair

If this is the case then we write f: A > B to mean that f is a function from A to B

The set A is called the
domain of f.
The set B is called the
co-domain of f.
If
$$(a,b) \in f$$
 then
we write $f(a) = b$
The range of f is
range $(f) = \{b \in B \mid there exists a \in A\}$
with $f(a) = b$

¢

(z) g (100) has two X Values: TT & -12 From A to B. g is not a function

Let's now use furmulas to define functions instead of defining them as subsets OF AXB.

EX: Let A be any non-empty set. The identity function on A is the function $i_A \circ A \rightarrow A$ defined as $\lambda_A(x) = x$ for all $x \in A$. Sometimes we will just Write i instead of iA. Formally you can think of $i_A = \{(x, x) \mid x \in A\} \subseteq A \times A$ $\overline{\lambda_{A}(x)} = X$

 $A = \{1, 2, 3, 4\}$ ja(1)=1 NA λA(2)=2 JA(3)=3 元A(4)=4 0 $A = \mathbb{R}, \lambda_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}, \lambda_{\mathbb{R}}(x) = X$ EX graph (2,2) Way S (1,11 to (010) draw JR

Ex: Let nEZ, NZZ. map <u>ís</u> Define the <u>reduction</u> another modulo n map to be nane for function $\pi_n:\mathbb{Z}\longrightarrow\mathbb{Z}_n$ some Vse Where $\pi_n(x) = x$ mapping $E_X: n=3$ $\mathbb{Z}_3 = \{\overline{2}, \overline{1}, \overline{2}\}$ $\Pi_3: \mathbb{Z} \to \mathbb{Z}_3, \ \Pi_3(\mathbf{x}) = \mathbf{x}$ some computations are:

$\begin{aligned} \Pi_{3}(0) &= \overline{0} & \Pi_{3}(-1) = -1 = \overline{2} \\ \Pi_{3}(1) &= \overline{1} & \Pi_{3}(-2) = -2 = \overline{1} \end{aligned}$

 $\pi_{3}(2) = 2$ $\Pi_3(3) = \overline{3} = \overline{0}$ $T_3(4) = \overline{4} = \overline{1}$ $\pi_3(s) = \overline{5} = 2$

 $\pi_{3}(-3) = -3 = 0$ $\pi_{3}(-4) = -4 = 2$ $\pi_{3}(-5) = -5 = 1$

domain $(\Pi_3) = \mathbb{Z}$ co-domain $(\Pi_3) = \mathbb{Z}_3$ range $(\Pi_3) = \Sigma_5, T, \overline{2} = \mathbb{Z}_3$

[Well-defined functions]

Ex: Suppose you and your friend Francis want to define a function on Q. You say "How about this function? $f: Q \rightarrow Q$ where $f(\frac{a}{b}) = \frac{b}{a}$ "

Francis says "I don't Know about that function. What about F(-) = -? That duesn't seem to make sense." You say "you're right. good call." Then you say, "OK I've got

another idea. How about
g:
$$Q \rightarrow Q$$
 where $g(\frac{a}{b}) = a$?
That totally works. For example,
 $g(\frac{3}{5}) = 3$ and $g(\frac{0}{2}) = 0$."
Then Francis says, "Hey wait
a minute, $g(\frac{3}{5}) = 3$ but $g(\frac{6}{10}) = 6$
and $\frac{3}{5} = \frac{6}{10}$. Shouldn't g
agree on those numbers?"
You say "Un yeah you're right."

The functions & and g above are not well-defined.

How to check that f: A > B is well-defined Check two things: $DIFAEA, then f(a) \in B$ 2 If some or all of the elements from A can be expressed in more than one way then we must check that if a, az are two expressions of the same element in $A(ie q_1 = q_2)$ then $f(a_1) = f(a_2)$

Ex: Let f: Q -> Q where $f\left(\frac{\alpha}{b}\right) = \left(\frac{\alpha}{b}\right)^2,$ Is f well-defined? Yes? proof that f is well-defined: \square Let $\stackrel{\alpha}{\rightarrow} \in \mathbb{Q}$. So, a, b EZ and b = 0. Then, $f\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right)^2 = \frac{a}{b^2} \leftarrow$ We have that a, b = Z and $b^2 \neq 0$ (since $b \neq 0$). $S_{0}, \frac{\alpha}{b^{2}} \in \mathbb{Q}$.

2) Suppose $\frac{\alpha}{b}$, $\frac{c}{d} \in \mathbb{C}$ and $\frac{\alpha}{b} = \frac{c}{d}$.

Is
$$f(\frac{a}{b}) = f(\frac{c}{d})$$

Method 1
Since $\frac{b}{b} = \frac{c}{d}$, then by squaring
both sider we get $\binom{a}{b}^2 = \binom{c}{d}^2$.
So, $f(\frac{a}{b}) = f(\frac{c}{d})$
You might ack, why is this true?
Method 2:
Recall how we define two fractions
to be equal:
 $\frac{w}{x} = \frac{y}{z}$ means $wz = xy$

Suppose
$$\frac{\alpha}{b} = \frac{c}{d}$$
.
Then $ad = bc$. Jusing
integer
So, $(ad)^2 = (bc)^2$ mult.
Then, $a^2d^2 = b^2c^2$ well-
defined
So, $\frac{\alpha^2}{b^2} = \frac{c^2}{d^2}$
Thus, $f(\frac{\alpha}{b}) = f(\frac{c}{d})$

From (1) and (2) above f is well-defined.

Ex: Let nEZ, n>2. $\alpha \in \mathbb{Z}$. Pick Define fa: Zun > Un $f_{\alpha}(\overline{X}) = \overline{\alpha} \cdot X$ 64 do some examples Let's n = 4, $\mathbb{Z}_{4} = \frac{2}{5} \overline{5}, \overline{5}, \overline{5}$ when Ly ZL Y $\overline{O} = \overline{O} \cdot \overline{I} = (\overline{O}), \overline{f}$ $f_{1}(\tau) = \overline{1} \cdot \overline{1} = \overline{1}$ $f_{1}(z) = \overline{1 \cdot 2} = 2$ **.** 2 $f_{1}(\overline{3}) = \overline{1 \cdot 3} = \overline{3}$ 13

 $f_{x}(\overline{o}) = \overline{Z} \cdot \overline{O} = \overline{O}$ $f_2(\tau) = 2 \cdot \tau = 2$ $f_{2}(\bar{z}) = 2.\bar{z} = 4$ \bigcirc = 2.3=6 $F_{3}(\bar{3})$ Z

 $f_3(\bar{o}) = \bar{3}, \bar{0} = \bar{0}$ $f_3(\overline{1}) = \overline{3} \cdot \overline{1} = \overline{3}$ $f_3(\bar{z}) = \bar{3}, \bar{2} =$ 6 2 g 3.3= $f_{3}(\bar{3})$

 $f(\bar{x})$ $\overline{0}$ ·X heurem: Let nEZ, NZZ. $a \in \mathbb{Z}$. Let $f_a: \mathbb{Z}_n \to \mathbb{Z}_n$ 1 pt given by $f_{\alpha}(\bar{x}) = \bar{\alpha} \cdot \bar{x}$. be Then fais well-defined. proof: XEZn Where XEL (I) Let

Since X, a EZ we Know axEZ. Thus, $f_{\alpha}(\bar{x}) = \bar{\alpha} \cdot \bar{x} = \bar{\alpha} \times \bar{x} \in \mathbb{Z}_{n}.$ 2 Let $\overline{x}, \overline{y} \in \mathbb{Z}$, where $\overline{x} = \overline{y}$. Then, $(since \overline{x} = \overline{y})$ $f_{\alpha}(\overline{X}) = \overline{\alpha} \cdot \overline{X} = \overline{\alpha} \cdot \overline{y} = f_{\alpha}(\overline{y}).$ when we talked about well-defined operations we proved that if B = c and J = e, then $\overline{b} \cdot d = \overline{c} \cdot \overline{e}$

Def: Let A and B be sets. Let f: A B be a function. We say that f is injective or one-to-one if the following is true: For all a, az EA, if $\alpha_1 \neq \alpha_2$, then $f(\alpha_1) \neq f(\alpha_2)$ $f(a_1) = f(a_2)$ Je YOY Cannot have this

Another way to define:
For all
$$a_1, a_2 \in A_2$$

if $f(a_1) = f(a_2)$, then $a_1 = a_2$

How to prove
$$f:A \rightarrow B$$
 is one-to-one
Let $a_1, a_2 \in A$.
Suppose $f(a_1) = f(a_2)$
: (proof stuff)
conclude $a_1 = a_2$

EX: Let F: R-> R be defined by f(x) = -4x+5Let's prove f is one-to-one. pf: Suppose X1, X2 EIR and $f(x_1) = f(x_2)$. Then, $-4x_1 + 5 = -4x_2 + 5$. Thus, $-4x_1 = -4x_2 + 5$. Thus, $-4x_1 = -4x_2 + 5$. So, $x_1 = x_2$. $x(-\frac{1}{4})$ Thus, Fis une-to-one

How to show f: A > B is not one-to-one Find specific X, X2 EA where $X_1 \neq X_2$ but $f(x_1) = f(x_2)$

Ex: Let ne Z, n72. Define f: Zn > Zn by $f(\overline{x}) = (\overline{x})^2$.

Claim: É is well-defined.

pf of claim:

where XEZ (1) Given XEZr we have that $f(\overline{\chi}) = \overline{\chi}^2 = \overline{\chi} \cdot \overline{\chi} = \chi^2.$ Since XEZ we Know $x^2 \in \mathbb{Z}$. Thus, $f(\bar{x}) = \bar{x}^2 \in \mathbb{Z}_{\mathbb{N}}$. 2 Suppose XI, XLEZn and $\overline{X_1} = \overline{X_2}$. Then, $f(\overline{X}_1) = \overline{X}_1^2 = \overline{X}_2^2 = f(\overline{X}_2)$ mult, is well-defined in $\mathbb{Z}_{n,j}$ if $\overline{\alpha} = \overline{c}$ and b=d, then 瓦ト=こよ Use with a=b=5 and Z=J=Xz Claim

 $[E_X:]$ n=2, $f(\overline{x})=\overline{x}^2$

Claim: Let f: Zn > Zn given by $f(\overline{x}) = \overline{x}^2$. If n>2, then f is not one-to-one. Proof of claim: Note first that since n>2 We know that T=-I [Why?] Suppose I = -I. Then, $I \equiv -I \pmod{n}$. Thus, n ((1-(-1)) Ie, n/Z. Thus, $n=\pm 1,\pm 2$. it happen since n>2

Let A and B be Vef: Let $f: A \rightarrow B$. sets. C be the range of f. Let We say that f is <u>surjective</u> or onto B if C = B.

Another way to say: f is onto B if for every $b \in B$, there $e \times ists a \in A$ with f(a) = b.
Ex: Let f: R>R be defined by f(x) = -4x + 5. Let's show that f is onto R. IK ĺΚ Proof: Let bER. We must

find a EIR, Scratchwork where $f(\alpha) = b$. $f(\alpha) = b$ -4a+5=bLet $a = \frac{b-5}{-4}$. $a = \frac{b-5}{-4}$ Note a EIR and $f(\alpha) = f\left(\frac{b-s}{-4}\right) = -4\left(\frac{b-s}{-4}\right) + 5$ =(b-5)+5=b. Thus, fis onto IR. _ []]_ -How to show F: A>B is not onto Find some be B where is no $\alpha \in A$ with $f(\alpha) = b$

fis not onto: proof: Let b=Z. Then, DE NUZOZ. But is no aEZ with $f(\alpha) = 2$. If so, then $\alpha^2 = 2$. Then, $\alpha = \pm \sqrt{2} \notin \mathbb{Z}$. Thus, f is not onto because ZÉrange(f). - ////-

Def: Let A and B be sets and $f: A \rightarrow B$. We say that f is a bijection if f is one-to-one and onto B.

unto B fisnot a hijection

Ex: (from Humework) Given a EZZ, define $g_a: Z_n \rightarrow Z_n$ by $g_a(x) = x + \overline{a}$ Ex: $g_5: \mathbb{Z}_6 \to \mathbb{Z}_6, g_5(\overline{x}) = \overline{x} + \overline{S}$ 16 16, $S_{5}(2) = S + 2 = 7 = T$ $g_{s}(\bar{o}) = \bar{o} + \bar{S} = \bar{G}$ $9_{5}(\bar{1}) = \bar{1} + \bar{5} = \bar{6} = \bar{0}$

In the HW you show ga is Well-defined.

the Claim: Given a EZ, function ga: Zn > Zn given by $g_{\alpha}(\overline{x}) = \overline{x} + \overline{\alpha}$ is a bijection

proof:

(one-to-one)
Suppose
$$g_a(\overline{x}_1) = g_a(\overline{x}_2)$$
 where
 $\overline{x}_{1,1} \overline{x}_2 \in \mathbb{Z}_n$.
Then, $\overline{x}_1 + \overline{\alpha} = \overline{x}_2 + \overline{\alpha}$.
Then, $(\overline{x}_1 + \overline{\alpha}) + -\overline{\alpha} = (\overline{x}_2 + \overline{\alpha}) + -\overline{\alpha}$.
Thus, $\overline{x}_1 + \overline{b} = \overline{x}_2 + \overline{b}$.
So, $\overline{x}_1 = \overline{x}_2$.

Thus, ga is one-to-onc. 1n Un (onto)ga Let JE Un, where $y \in \mathbb{Z}$. 4-0 = y+-a Then, y-ae (LA because y-AEK. And, $\mathcal{O}_{\alpha}(\overline{y}-\alpha) = \overline{y}-\alpha + \alpha$ $= y - \alpha + \alpha$ $= \gamma$ onto. 50, 9~ 15

Def: Let A, B, C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Define the composition of f and g to be the function (gof): A -> C by $(g \circ f)(a) = g(f(a))$ (1) 90+

Ex: (Hammack 12,4 #9) Define f: ZLXZL > Z where f(m,n) = m + nand g: ZL->ZLXZ where $q(\chi) = (\chi, \chi)$

 $fog: \mathbb{Z} \to \mathbb{Z}$ $(f \circ g)(\chi) = f(g(\chi))$ =f(x,x)=x+x=ZxSo, (fog)(x) = 2xZXX ZXZ Ľ (m+n, m+n) m+n (m,n) 90f $g \circ f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ $(g \circ f)(m,n) = g[f(m,n)]$

$$= g(m+n)$$
$$= (m+n, m+n)$$
$$So, (gof)(m,n) = (m+n, m+n)$$

Ruestion: Is g 1-1? Is gonto? Claim: g is 1-1 pf: Suppose g(X1) = g(X2) glx where $X_1, X_2 \in \mathbb{Z}$. Then, $(x_1, x_1) = (x_2, x_2) \in$ $S_{o_1} \times_1 = \times_2$.

claim: g is not onto. pf: Let (1,2) EZXZ. There is no XEZ with g(x) = (x, x) = (1, 2).ZXZ C (×,×) . (1,2) So, $(1,2) \notin range(g)$ So, g is not onto.

Recall that $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where f(m, n) = m + n. Question: Is f onto? Is f 1-1?

Claim: f is onto ZXXZ proof: Let yEZ. (0, y)Then, $(0, y) \in \mathbb{Z} \times \mathbb{Z}$ and f(o,y) = O+y(3,2) $= \mathcal{Y}$. (5,0)

Claim: f is not 1-1 p(oof: f(3,2) = 5 = f(5,0) $but (3,2) \neq (5,0).$ See picture above.

Theorem: Let A, B, C be sets and $f: A \rightarrow B$ and $g: B \rightarrow C$. ① IF F and g are both onto, then gof is onto. 2) IFF and g are both 1-1, then gof is 1-1.

proof:

$$D$$
 Suppose f and g are both onto.
Note $g \circ f : A \rightarrow C$.

Let ZEC. Since g is onto C, there exists $y \in B$ where g(y) = Z. Since f is onto B, there exists XEA where f(x) = y. Then $(g \circ f)(x) = g(f(x))$ $= \mathcal{G}(\mathcal{Y}) = \mathcal{Z}$ So, gof is unto because there exists XEA with $(g_{o}f)(x) = Z$ (Z) Suppose f and g are b.th 1-1.

Suppose $(g_{o}f)(x_{1}) = (g_{o}f)(x_{2})$ where $x_1, x_2 \in A$. Then, $g(f(x, 1) = g(f(x_2))$. Since g is I-l and $g(f(x_1)) = g(f(x_2))$ this implies that $f(x_1) = f(x_2)$. Since F is 1-1 and $f(x_1) = f(x_2)$ this implies that $X_1 = X_2$. $S_0(g_0f)(x_1) = (g_0f)(x_2).$ implies that $X_1 = X_2$. Thus, gof is I-I.

3) Suppose f and g are both bijections (1-1 and onto). By 1, this implies that gof will be onto. By 2, this implies that gof will be 1-1. So, gof is a bijection.

Now we talk about inverse functions.

 $(f' \circ f)(i) = f'(f(i)) = f'(i) = i$ $(f' \circ f)(z) = f''(f(z)) = f'(iz) = z$ $(f' \circ f)(z) = f''(f(z)) = f''(\pi z) = z$ $(f' \circ f)(z) = f''(f(z)) = f''(\pi z) = z$ $(f' \circ f)(z) = f''(z) = f''(z) = z$ $(f' \circ f)(z) = f''(z) = z$

We see that $(f \circ f^{-})(z) = Z = \lambda_c(z)$ for all ZEC. Def: Let A and B be sets Let f: A > B be a one-to-one function. Let C=range(f). Define the inverse function of f to be $f': C \rightarrow A$ such that f'(z) = Xwhere f(x) = Z.

B C. f-1

Note: f'is well-defined because f is one-to-one. There is one and only one arrow to reverse for each ZinC.

Theorem: Let A, B be sets.
Let
$$f: A \rightarrow B$$
 be a one-to-one
function. Let $C = range(f)$.
Let $f^{-1}: C \rightarrow A$ be the inverse
of f. Then:

1) domain
$$(f^{-1}) = \operatorname{range}(f) = C$$

2) range $(f^{-1}) = \operatorname{domain}(f) = A$
2) range $(f^{-1}) = \operatorname{domain}(f) = A$
In particular, f^{-1} is onto A.
3) f^{-1} is one-to-one
4) $(f^{-1}\circ f)(a) = a$ for all $a \in A$.
50, $f^{-1}\circ f = \lambda_A$

proof; D By det of f⁻¹ we have domain $(f^{-1}) = C = range(f)$. (Z) Let's show that range (f-1)=A. we know $range(f^{-1}) \leq A$. Why is $A \leq range(f^{-1})$. By def of f⁻¹ we know Let a EA. Let c = f(a)And, $f'(c) = \alpha$ by def of f'. So, a Erange (f⁻¹). Thus, A Srange (f-1) Therefore, A=range(f).

(3) Let's show that f' is one-to-one. Suppose $f'(c_1) = f'(c_2)$ Where $C_{1}, C_{2} \in C$. We need to show that $c_1 = c_2$. Let $\alpha = f^{-1}(c_1) = f^{-1}(c_2)$. Since a=f-(c,) we know that $f(\alpha) = c_1$. Since $q = f^{-1}(c_2)$ we know that $f(\alpha) = C_2$. $S_{0}, C_{1} = f(\alpha) = C_{2}.$ Thus, f⁻¹ is one-to-one.

4 Let's show that
$$f^{-1}\circ f = i_A$$
.
Let $a \in A$.
Set $c = f(a)$.
So, $f^{-1}(c) = a$ by def of f^{-1} .
Then,
 $(f^{-1}\circ f)(a) = f^{-1}(f(a))$
 $= f^{-1}(c)$
 $= a$
 $= i_A(a)$
Thus, $(f^{-1}\circ f)(a) = i_A(a)$
for all $a \in A$.
So, $f^{-1}\circ f = i_A$

(5) Let's show that $(f \circ f^{-1})(c) = c$ for all $c \in C$. Let ce C. Then, $f^{-1}(c) = a$ where $a \in A$ and f(a) = C.

Thus, $(f \circ f^{-1})(c) = f(f^{-1}(c))$ = f(a)

= C $= \bar{\lambda}_{c}^{(c)}$

where gof=IA (G) Let $g: C \rightarrow A$ that g = f. We want to show So we must show that g(c) = f'(c) for all $c \in C$. Let $c \in C$. Then, f'(c) = a where aeA and f(a)=c. lhen, g(c) = g(f(a)) = (gof|(a))assumption = $i_A(a)$ gof = $i_A = a$ $= f^{-1}(c)$ Thus, $g = f^{-1}$.

f(4,5) = (4+5, 4+2.5) = (9, 14)f(-2,1) = (-2+1, -2+2.1) = (-1, 0)

Claim: f is one-to-one

proof: Suppose $f(m_1, n_1) = f(m_2, n_2)$ where $(m_1, n_1), (m_2, n_2) \in \mathbb{Z} \times \mathbb{Z}$. We need to show that $(m_1, n_1) = (m_2, n_2)$. Since $f(m_1,n_1) = f(m_2,n_2)$ we know $+hat(m_{1}+n_{1},m_{1}+2n_{1})=(m_{2}+n_{2},m_{2}+2n_{2}).$

Thus, $m_1 + n_1 = m_2 + n_2$ (1) $m_1 + 2n_1 = m_2 + 2n_2$ (2)

Calculating (2) - (1) we get
that
$$n_1 = n_2$$
.
Thus we get
 $m_1 + n_2 = m_1 + n_1 = m_2 + n_2$
 $n_2 = n_1$ eqn (1)
Subtract n_2 from both
sides to get $M_1 = M_2$.
Thus, $(m_1, n_1) = (m_2, n_2)$.
Thus, f is une-th-one.
Claim I -

Claim 2: f is onto Let $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. We must find (m,n) EZXZ where f(m,n) = (a,b)ZXZ ZXZ (m,n) f(a,b)That is, we need to solve (m+n, m+2n) = (q, b).F(M, N)we need to solve 50

$$m+n = a 0$$

$$m+2n = b 2$$
for m and n.
Calculating (2) - (0) you get
that n = b - a.
Then,
m = a - n = a - (b - a) = 2a - b.
Permodian (n = b - a)
So, set (m, n) = (2a - b, b - a).
this is in ZXZ
because a, b \in Z
And we have that
 $f(m, n) = f(2a - b, b - a)$

= (2a-b+b-a, 2a-b+2(b-a))= (a, b)

Thus, f is onto.

From above we have that fis I-I. Thus, f'exists. domain $(f^{-1}) = range(f) = \mathbb{Z} \times \mathbb{Z}$ f is onto

Claim 3: Let g: ZXZ > ZXZ be defined by g(a,b) = (2a-b,b-a).Then, $g = f^{-1}$ Let's use thm from last time: $f: A \rightarrow B$, f is l-l, C = range(f)

If
$$g: C \rightarrow A$$
 and $g \circ f = i_A$
then $g = f^{-1}$

Proof of claim 3:) We have
 $(g \circ f)(m,n) = g(f(m,n))$
 $= g(m+n, m+2n)$
 $= (2(m+n) - (m+2n)g(m+2n) - (m+n))$
 $= (m,n)$
 $= i_{Z \times Z}(m,n).$
Since $g \circ f = i_{Z \times Z}$ we
have $g = f^{-1}$. Claim 3

Def: Let A and B be Sets. Let f: A->B. DLet XSA. The image of X under f is $f(X) = \{f(x) \mid x \in X\}$ (2) Let ZEB. The inverse image of I under f

is the set $f^{-1}(\underline{Y}) = \frac{2}{3} a \in A \left[f(a) \in \underline{Y} \right]$ Note: We use f' notation, but it duesn't necessarily mean inverse function because f⁻¹ might not exist

the following tunction. Consider Εx: f(1) = 7f(z) = |z|f(3) = 7f(y) = 13D f(S) = ||. 2 f(6) = 12>013 $Let X = \{2, 3, 5, 6\}$ Then, $f(X) = \{f(z), f(3), f(5), f(6)\}$

 $= \{ 12, 7, 11, 12 \}$ $= \{2, 1, 1, 12\}$

(b) Let X= {1, 3, -5, 10, loz} Then, $\pi_{6}(\overline{X}) = \{ \pi_{6}(I), \pi_{6}(3), \pi_{6}(-5), \pi_{6}(I) \}$ $\Pi_{G}(102)$ $= \{ \overline{1}, \overline{3}, \overline{-5}, \overline{10}, \overline{102} \}$ = $\{ \overline{1}, \overline{3}, \overline{1}, \overline{4}, \overline{0} \}$ = $\{ \overline{1}, \overline{3}, \overline{1}, \overline{4}, \overline{0} \}$ = $\{ \overline{1}, \overline{3}, \overline{1}, \overline{4}, \overline{0} \}$ $= \frac{1}{2} \overline{7}, \overline{3}, \overline{4}$ - 42

(c) Let $\underline{Y} = \{\overline{T}\}$. Let's calculate $\pi_6^{-1}(\underline{Y})$. Let's take a look at the picture.

Note: $-5, 1, 7 \in \pi_6(Y)$

And, -5 = 6(-1) + 1| = 6(0) + |7 = 6(1) + 1Also, $13 \in TT_6(I)$ and 13 = 6(2) + 1. Claim: $TT_6(\overline{X}) = \frac{2}{6}k+1 | k \in \mathbb{Z}$ proof: (\leq) : Let $x \in \Pi_6^{-1}(\underline{Y})$.

 $S_{0}, \pi_{6}(x) \in \overline{Y}$ \times T₆ $\overline{}$ Thus, $TT_6(x) = T$. So, $\overline{X} = T$ in \mathbb{Z}_6 Then, $X \equiv 1 \pmod{6}$. Thus, 6 | (x-1). Hence, X-1=61 where $l \in \mathbb{Z}$. Therefore, x = 62+1. Thus, XEZGK+1 [keZ] Hence, $T_6(X) \leq \frac{1}{6}k+1|k\in\mathbb{Z}$ (2): Let yez6kti keZ}

where LEZ. $S_0, y = 6l + l$ Then, $\Pi_6(y) = \overline{y} = 6l+1$ = 6l+l= 0l+1 < $S_{0}, \pi_{6}(y) \in \overline{Y}.$ 26 Thus, $y \in \overline{T_6}(\underline{T})$. Therefore, $26k+1[keZ_{j}^{2} \subseteq \overline{T}_{6}(\underline{Y})]$ By (=) and (2), $\pi_{6}^{-1}(\underline{T}) = \{ \{ k \in \mathbb{Z} \} \| \mathbb{Z} \}$

(I) f(WUZ) = f(W)Uf(Z) HW $\Im f(WNZ) \leq f(W)Nf(Z)$ Hammuck 12.6 3 Give an example to show #7,8 that $f(WnZ) = f(W) \Lambda f(Z)$ is not always true (4) If $W \subseteq Z$, then $f(W) \subseteq f(Z)$

proof: Let's prove 2,3, then D, then (4) (2) We want to show that $f(WNZ) \subseteq f(W) \cap f(Z).$ Let bef(WNZ). B W f(WNZ) WNZ Then there exists aEWNZ where $f(\alpha) = b$.

Since
$$a \in WNZ$$
 we know
 $a \in W$ and $a \in Z$.
Since $a \in W$ and $f(a) = b$
we know $b \in f(W)$
Since $a \in Z$ and $f(a) = b$
we know $b \in f(Z)$.
Thus, $b \in f(W) \cap f(Z)$.
Hence, $f(WNZ) \subseteq f(W) \cap f(Z)$.

3) Let's give an example
to show that
$$f(wnz) = f(w) \wedge f(z)$$

is not always true.

(1) We want to show that f(WUZ) = f(w)Uf(Z)(C): Let yef(WUZ). К A f(WUZ) WUZ 1

Then there exists $X \in W \cup Z$ where f(x) = Y.

Since XEWUZ we Know XEW or XEZ.

So either YEF(W) or YEF(Z) from the two cases above. Thus, $y \in f(w) \cup f(Z)$. (2): Let bef(w)Vf(Z). Then, $b \in f(w)$ or $b \in f(Z)$. Casel' Suppose bef(w). Then there exists a EW Where f(a) = b. f(w) $(\rightarrow \circ b)$ 6-MZ) f(wuz)

AEWSWUZ. But So, $\alpha \in WUZ$ and $f(\alpha) = b$. bef(wuZ). Thus, Cuse 2: Suppose bef(Z). Then there exists a EZ where f(a) = b. f(wvz)Z AEZSWUZ, BUT $\alpha \in WUZ$ and $f(\alpha) = b$. So, Thus, bef(WVZ).

Therefore, in either case 1 or case 2 we get $b \in f(wuz)$. Thus, $f(w)Vf(z) \subseteq f(wvz)$.

By,
$$(\leq)$$
 and (\supseteq) we get
 $f(wvz) = f(w)vf(Z).$

() Suppose
$$W \leq Z$$
.
Let $y \in f(W)$.
Then, there exists
 $x \in W$ with
 $f(x) = Y$.
Since $W \leq Z$
and $x \in W$

We KNOW that XEZ. Since x EZ and f(x)=y we know that yef(Z). We have shown that $f(w) \leq f(z)$.

Key: Recall: $X \in f^{(w)}$ $f: A \rightarrow B$ means $f(x) \in W$ $M \leq B$ $f^{-}(W) = \sum x \in A | f(x) \in W$ A \mathbb{N} $f^{-}(w)$ f(x)Х

Then: () $f^{-1}(WNZ) = f^{-1}(W)Nf^{-1}(Z)$ (2) $f^{-1}(WUZ) = f^{-1}(W)Uf^{-1}(Z)$ (3) $A - f^{-1}(W) = f^{-1}(B - W)$ (4) If $W \leq Z$, then $f^{-1}(W) \leq f^{-1}(Z)$

Proof:) Let's show that $F^{-1}(WNZ) = F^{-1}(W)NF^{-1}(Z).$ $|\subseteq|$: Let a e f (WNZ). К \sim F-1(WN2) Then, $f(a) \in W \cap Z$. So, $f(a) \in W$ and $f(a) \in \mathbb{Z}$.

Thus, $\alpha \in f^{-1}(w)$ and $\alpha \in f^{-1}(Z)$. Therefore, $\alpha \in f^{-1}(w) \cap f^{-1}(Z)$. $\left| \geq \right|$ Let $x \in f'(w) \cap f'(z)$. Then, $x \in F^{-1}(W)$ and $x \in f^{-1}(Z)$. So, $F(x) \in W$ and $f(x) \in Z$ Thus, $f(x) \in W \cap Z$. So, $x \in f^{-1}(wnZ)$. $By (\leq)$ and (\geq) we get $f^{\prime}(WNZ) = f^{\prime}(W)\Lambda f^{\prime}(Z),$

(Z) Let's show that $f^{-1}(WUZ) = f^{-1}(W)Uf^{-1}(Z)$ $\left| \subseteq \right|$: Let a e f - (WUZ). f-'(WUZ) $f(\alpha)$

So, F(g) EWUZ.
Thus, $f(\alpha) \in W$ or $f(\alpha) \in \mathbb{Z}$. Hence, aef'(w) or aef'(z). Ergo, $\alpha \in f^{-1}(W) \vee f^{-1}(Z)$. Thus, $f'(WVZ) \subseteq f'(W)Vf'(Z)$. 2Let $x \in f^{-}(W) \cup f^{-}(Z)$. Then, $x \in f'(w)$ or f'(z). f(x)EZ. So, f(x) EW Ur Hence, f(x) EWUZ. Thus, XEF'(WUZ), Hence, $f'(w) \cup f'(z) \subseteq f'(w \cup z)$

 $By(\leq)$ and (2) we have that f'(WUZ) = f'(W)Vf'(Z).

Iff version of (2): aef-(WUZ) iff f(a) EWUZ iff $f(a) \in W$ or $f(a) \in Z$ iff $a \in f^{-1}(w)$ or $a \in f^{-1}(Z)$ $iff \alpha e f'(w) U f'(z)$ Thus, $f^{-1}(wVZ) = f^{-1}(w)Vf^{-1}(Z)$

(3) Let's show that

$$A - f'(W) = f'(B - W)$$

We have that $a \in A - f'(W)$
iff $a \in A$ and $a \notin f'(W)$
A $a \circ f \circ f(a)$
 $f^{-1}(W)$
iff $f(a) \in B$ and $f(a) \notin W$.
iff $f(a) \in B - W$.
Thus, $A - f'(W) = f'(B - W)$.

(4) Suppose that WEZ. Let's prove that $f'(W) \leq f'(Z)$. Let a e f - '(w).

Then, $f(a) \in W$. Since $f(a) \in W$ and $W \subseteq Z$, we know that $f(a) \in Z$. Thus, $a \in f^{-1}(Z)$. Hence, $f^{-1}(W) \subseteq f^{-1}(Z)$.